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A generalized model of flow in meandering subaqueous and subaerial channels is
developed. The conservation equations of mass and momentum are depth/layer
integrated, normalized, and represented as deviations from a straight base state. This
allows the determination of integrable forms which can be solved at both linear and
nonlinear levels. The effects of various flow and geometric parameters on the flow
dynamics are studied. Although the model is not limited to any specific planform, this
study focuses on sine-generated curves. In analysing the flow patterns, the turbidity
current of the subaqueous case is simplified to a conservative density flow with water
entrainment from above neglected. The subaqueous model thus formally corresponds
to a subcritical or only mildly supercritical mud-rich turbidity current. By extension,
however the analysis can be applied to a depositional or erosional current carrying
sand that is changing only slowly in the streamwise direction. By bringing the
subaqueous and subaerial cases into a common form, flow behaviour in the two
environments can be compared under similar geometric and boundary conditions. A
major difference between the two cases is the degree of superelevation of channel flow
around bends, which is modest in the subaerial case but substantial in the subaqueous
case. Another difference concerns Coriolis effects: some of the largest subaqueous
meandering systems are so large that Coriolis effects can become important. The
model is applied to meander bends on the youngest channel in the mid-fan region of
the Amazon Fan and a mildly sinuous bend of the North-West Atlantic Mid-Ocean
Channel. In the absence of specific data on the turbid flows that created the channel,
the model can be used to make inferences about the flow, and in particular the range
of values of flow velocity and sediment concentration that would allow the growth
and downfan migration of meander bends.

1. Introduction
Meandering is perhaps the most common planform morphology of river channels.

Through the years the scientific community has consistently maintained an interest
in the study of river meandering. The motivations for such attention range from the
challenge of explaining a very complex and beautiful phenomenon in relatively simple
terms to practical engineering and environmental concerns (Wicker 1983; Salo et al.
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1986; Sun, Meakin & Jøssang 1996). Numerical and physical models together with
field observations over the past few decades have helped scientists place quantitative
bounds on the physical factors that affect river pattern, cross-sectional shape, and
temporal and spatial evolution. The cause of subaerial meandering and associated
migration in alluvial streams is no longer a subject of speculation; most aspects can
be explained adequately by means of linear theories developed from the conservation
equations of momentum and mass applied to water and sediment, as described below.

Following the original work of Hickin (1974) and Hickin & Nanson (1975), con-
siderable progress has been made by Ikeda, Parker & Sawai (1981), Parker, Sawai
& Ikeda (1982), Parker, Diplas & Akiyama (1983), Parker (1983), Beck, Melfi &
Yalamanchili (1983), Parker & Andrews (1986), Howard (1992), Johannesson (1988),
Johannesson & Parker (1989), and Parker & Johannesson (1989) in understanding
and quantifying the initiation, deformation and migration of meander bends in rivers.
The deformation and migration of meander bends was described by relating the
bank erosion/deposition rate with a near-bank velocity excess/deficit, which was
determined from a linear theory of flow and sediment transport. Such analyses have
yielded valuable information regarding the growth and migration of meanders, in-
cluding estimates of wavelength, amplitude growth rate, and downstream rate of shift.
Natural rivers have been found to select meander wavelength so that the locus of high
streamwise velocity moves toward the outside of the bend slightly downstream of the
bend apex. As a result, meander bends can grow laterally and migrate downchannel
simultaneously, as often seen in nature. An analysis based on a linear treatment of
flow dynamics and a nonlinear treatment of channel geometry was able to describe the
asymmetry characteristic of large river bends (e.g. Parker et al. 1983). The treatment
was adapted to the prediction of channel migration at engineering time scales (e.g.
Parker 1982).

The use of such a mechanistic model has become increasingly popular in simulating
the evolution of floodplains by rivers that are nearly straight at the beginning. Such
models can evolve complex morphology on their own (e.g. Howard 1992; Sun et
al. 1996; Stølum 1996). The limitations associated with a linear treatment of flow
dynamics, however, pose the question of whether the simulated evolution of a long-
term geologic-scale phenomenon may look remarkably realistic but nevertheless may
be fundamentally flawed due to the neglect of the nonlinearities in the flow dynamics.
The models of Smith & McLean (1984) and Nelson & Smith (1989) retain these
nonlinearities in the depth-integrated St. Venant equations in an intrinsic coordinate
system. Their pioneering analyses provide the starting point for a consideration of
flow nonlinearities herein.

Another term of some importance is the dispersion term associated with redistribu-
tion of the streamwise momentum by the secondary current as described later in (2.3).
It was found by Johannesson (1988) and Johannesson & Parker (1989) to help resolve
a contradiction between the theoretical results of Ikeda et al. (1981), Tamai & Ikeuchi
(1984), Johannesson (1985), and Blondeaux & Seminara (1985) and the experimental
results of Kikkawa, Ikeda & Kitagawa (1976). In the present study the governing
equations of flow are solved at both linear and nonlinear levels to determine the
importance of the nonlinearities as well as the above mentioned dispersion term as
they effect the flow in meander bends.

In fact the largest meandering channels on Earth are not subaerial, but instead are
found on submarine fans in the deep ocean. Submarine fans are depositional zones
found at or beyond the base of the continental slope. The sedimentation is driven
by deposition from submarine debris flows or turbidity currents. The latter, which
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are turbulent density underflows obtaining their driving force from sediment held in
suspension, are of interest here in that they are thought to be the primary mechanism
for the formation and maintenance of discrete channels on submarine fans (Imran,
Parker & Katopodes 1998).

Many submarine fans show an intricate pattern of channelized distributaries
(Pirmez & Flood 1995). Acoustic images indicate that meandering channels are
commonly found on submarine fans. Mud-rich fans such as the Amazon (Damuth et
al. 1983), Rhône (Droz & Bellaiche 1985), Mississippi (Garrison, Kenyon & Bouma
1982; Weimer 1991), Zaire (Droz et al. 1996) and Indus (Clark, Kenyon & Pickering
1992) are coursed by intensely sinuous channels. The sinuosity of submarine channels
has been found to be as large as three, with recurving meander loops and occasional
cutoffs that strongly resemble those of subaerial rivers (Flood & Damuth 1987;
Pirmez 1994; Pirmez & Flood 1995). Detailed bathymetry of part of the Amazon Fan
is given in figure 1. Although the present focus is meandering on submarine fans, it
is worth noting that meandering submarine canyons analogous to incised subaerial
rivers are also common. An example is the incised channels of the Peru–Chile forearc
region (Hagen et al. 1994). These channels are probably due to erosional turbidity
currents.

Most submarine canyons and fans are dormant during periods of interglacial high
sea stand such as the one that prevails today. The turbidity currents that form them
are activated during periods of low sea stand, when continental sediment is directly
supplied to the outer edge of the shelf. This notwithstanding, there are a number
of fan and canyon systems that are active under present conditions, including the
Canyon system in the Peru-Chile forearc region (Hagen et al. 1994) and the Zaire
Submarine Fan (Droz et al. 1996). In addition to these natural cases, the marine
disposal of mine tailings has also been responsible for the formation of small-scale
channelized fans (Hay 1987a).

The planform characteristics of submarine channels can vary considerably from
location to location (e.g. Clark et al. 1992). Compilations of measurements of subma-
rine channel characteristics suggest, however, that the planform shapes of submarine
and subaerial meanders are often nearly indistinguishable from one another in terms
of the ratios of meander wavelength to radius and wavelength to amplitude (Flood
& Damuth 1987; Weimer 1991; Clark et al. 1992; Pirmez 1994). While the surface
planform shape of the submarine case appears to be quite similar to the subaerial
case, channel cross-section, including the channel width and overall height and size
of channel levees, markedly differ between the two environments. In particular, the
submarine case is characterized by channel-bounding levees with heights that are on
the order of the channel depth itself, i.e. much higher than those of the subaerial case
(e.g. Damuth et al. 1988).

The reason for these levees being so high is probably associated with the flow
itself. In the case of rivers, the effective density difference, i.e. that between water
and the air above, is very large. In the case of turbidity currents, however, the
effective density difference between sediment-laden water and the sediment-free water
above the interface is much smaller. This small difference should exaggerate the
response of the flow interface to both curvature and the Coriolis force, resulting in
amplified superelevation as compared to the subaerial case. The acoustic image of
a turbid underflow at a bend in Rupert Inlet, British Columbia given in figure 2,
showing a very large left–right asymmetry in flow thickness in a subaqueous channel
of moderate width, illustrates this effect. The Coriolis force has been found to be
essentially negligible in even the largest rivers. For the reason cited above, however,
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Figure 1. Bathymetry of the Amazon Fan near the longitude of 46◦ W and the latitude
of 5◦ N shows an intricate pattern of channel meandering.

this may not be the case for the turbidity currents that have formed the largest
submarine channels (Chough & Hesse 1980). With this in mind the Coriolis force is
retained in the present analysis.

The study of subaqueous meandering channels has mostly remained at the level
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Figure 2. Acoustic image of the cross-section of a submarine channel in Prince Rupert Inlet, British
Columbia. The higher levee on the right-hand side is associated with the outside of a bend. The
image shows an active turbidity current that is so superelevated on the right-hand side that it is
spilling over the levee. From Hay (1987b), copyright by the American Geophysical Union.

of field observation and interpretation. Unlike river meandering, there have been
relatively few attempts to explain the process of submarine channel meandering in
terms of the laws of physics. One of the few exceptions is the analysis of Hay (1987b).
In the present study, an attempt is made to place the study of flow in subaerial and
subaqueous meandering channels on an equal footing, so as to be able to compare
the two.

2. Theory
Here a simplified meandering channel with constant half-width b and vertical

sidewalls is considered. The coordinates are intrinsic with s denoting a centreline
downchannel arclength coordinate and n denoting a transverse coordinate normal to
s, as defined in figure 3. The channel centreline curvature is defined as

C = −dθ

ds
(2.1)

where θ is the angle of inclination of the channel centreline relative to a straight
downvalley coordinate.

The treatment for flow in a meandering river channel is taken directly from the
depth-integrated formulation of Johannesson & Parker (1989), but slightly generalized
here to include the Coriolis force. The description given here is abbreviated; the reader
is referred to that reference and Parker, Fukushima & Pantin (1986) for more details.

2.1. Flow in a meandering river

The depth-integrated governing equations for flow in a meandering river are as
follows. The relations for the conservation of fluid mass, streamwise momentum and
transverse momentum are, respectively

∂ūh

∂s
+

∂

∂n
[(1 + nC)v̄h] = 0, (2.2)
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Figure 3. (a) Definition sketch showing the coordinate system. (b) Schematic of meander migration
in relation to the locus of high velocity (adapted from Parker 1983 with permission of the ASCE).

1

1 + nC
ū
∂ū

∂s
+ v̄

∂ū

∂n
+

Cūv̄

1 + nC

= − g

1 + nC

∂ξ

∂s
− Cf (ū2 + v̄2)1/2

h
ū− 1

h

∂

∂n

(
ūhT v̄s

)
+ fv̄ (2.3)

and

1

1 + nC
ū
∂v̄

∂s
+ v̄

∂v̄

∂n
− Cū2

1 + nC
= −g∂ξ

∂n
− Cf (ū2 + v̄2)1/2

h
v̄ − fu. (2.4)

In relations (2.2) to (2.4), ū and v̄ denote depth-integrated fluid velocity in the s-
and n-directions respectively, g is the acceleration due to gravity, C is the channel
centreline curvature defined by (2.1), ξ is the water surface elevation, h is the water
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depth and Cf is a dimensionless friction factor, considered to be a given constant in
the present analysis. In addition, T is a dimensionless shape function averaging to
unity which describes to first order the vertical variation of streamwise velocity, and f
is the Coriolis parameter, related to the rotational speed of the Earth ω and latitude
Φ as follows:

f = 2ω sinΦ. (2.5)

The parameter vs is the secondary flow velocity in the transverse direction. The
secondary flow in river bends is driven by the local imbalance between the centrifugal
force and the transverse pressure force generated by superelevation of the water
surface. Here vs is defined so that it integrates to zero from bed to water surface.
The third term on the right-hand side of (2.3) denotes dispersion associated with the
redistribution of streamwise momentum by the secondary flow. Several other such
dispersion terms are delineated in Johannesson & Parker (1989); these are dropped
here since they have been found to be insignificant in previous studies. In the original
derivation, the Coriolis force was not considered because it is quite small even for
very large rivers. The reason for its inclusion here is to allow comparison between
the subaerial and subaqueous environment. It has been found that an integral form
of (2.2) is also required to close the problem. Integrating (2.2) between banks, it is
found that ∫ b

−b
uh dn = Q (2.6)

where Q is the total discharge.

2.1.1. Normalization of the relations

The following scales are introduced to non-dimensionalize (2.2) to (2.6):

n̂ =
n

b
, ŝ =

s

b
, φ = kŝ, C = Ĉ/b; (2.7a)

û =
ū

U
, v̂ =

v̄

U
, v̂s =

vs

U
, ĥ =

h

H
; (2.7b)

ξ = ξr − Is−Hξ̂d, η = ηr − Is−Hη̂d; (2.7c)

H = ξr − ηr, f∗ =
fb

U
. (2.7d)

In the above U is the equilibrium flow velocity that would prevail in a straight
reference channel with the same downstream slope I as the mean slope of the
meandering channel measured along the arclength of its centreline. In addition, H is
the corresponding reference flow depth, k is a non-dimensional wavenumber related to
a characteristic arc wavelength of meandering λ measured along the channel centreline
by k = 2πb/λ, ξr and ηr are water surface and bed elevation of the reference state

at s = 0 and ξ̂d and η̂d are non-dimensional perturbations of water surface and bed
elevation respectively. By definition the parameters U, H and I are related as follows:

gI =
CfU

2

H
, (2.8)

i.e. the default form of (2.3) for the reference equilibrium state. The parameter φ is
a downchannel phase that is incremented by a value of 2π as s is incremented by
one characteristic wavelength λ. In addition to the above, the following dimensionless
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numbers are introduced:

ε =
Cfb

H
(2.9)

and

F =
U

(gH)1/2
. (2.10)

Parker & Johannesson (1989) have shown that ε is of the order 0.1 and F is of the
order of unity in natural channels. The dispersion term in (2.3) was evaluated by
Johannesson & Parker (1989) at linear level using an approximate moment method.
That evaluation is used here as well to close the problem.

After dropping the hats to avoid clutter, application of an approximation to the
transverse momentum equation that is explained and justified in Johannesson &
Parker (1989) and some simplification, the non-dimensional equations can be reduced
to the following forms:

k
∂uh

∂φ
+

∂

∂n
[(1 + nC)vh] = 0, (2.11)

k

1 + nC
u
∂u

∂φ
+ v

∂u

∂n
+

Cuv

1 + nC

=
ε

1 + nC
− F−2 k

1 + nC

∂ξd

∂φ
− ε (u2 + v2)1/2

h
u+ εAsnC + f∗v, (2.12)

Cu2

1 + nC
= F−2 ∂ξd

∂n
+ f∗u, (2.13)

∫ 1

−1

uh dn = 2, (2.14)

where

As = 181
2χ2 + 4

5
χ+ 1

15

γ2χ1

. (2.15)

In (2.15), γ = b/H , and the terms χ and χ1 are O(1) dimensionless parameters given
by

χ1 =
C
−1/2
f

13
, χ = χ1 − 1

3
. (2.16)

The simplified formulation of the transverse momentum equation precludes the ten-
dency for alternate bars to be damped at large wavenumbers demonstrated by
Colombini, Seminara & Tubino (1987).

2.2. Flow in meandering submarine channels

Turbidity currents sufficient to create and maintain slowly aggrading channels on
submarine fans are likely to be quasi-continuous events. That is, the duration of
a channel-forming or channel-maintaining turbidity current is likely to be on the
order of many hours or days (e.g. Hay 1987a). The layer-averaged equations for
the conservation of fluid mass, sediment mass and flow momentum of a continuous
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turbidity current containing a uniform grain size can be found in Cartesian form in
Imran et al. (1998). The treatment allows for variation in time as well as streamwise
and transverse directions.

In principle turbidity currents are either erosional or depositional and do not tend
to converge toward the normal equilibrium state of rivers (e.g. Parker et al. 1986).
Submarine fans in particular are depositional environments. This notwithstanding,
the fact that many meandering channels on submarine fans extend for hundreds
or thousands of kilometres suggests that the downchannel rate of loss of sediment
during a channel-maintaining turbidity current may be sufficiently small to allow
approximation of the flow as conservative with respect to sediment over several
bend wavelengths. This approximation is adopted here for simplicity. In addition, the
densimetric Froude number of the turbidity current is assumed to be sufficiently low
to allow the neglect of the turbulent entrainment of sediment-free water from above.
This latter approximation is strictly valid for turbidity currents that are subcritical or
only mildly supercritical in terms of bulk densimetric Froude number. Both of the
above mentioned approximations can be relaxed at a later time.

In intrinsic curvilinear coordinates, then, the conservation equations of fluid mass,
streamwise momentum and transverse momentum of a quasi-conservative continuous
turbidity current within a submarine channel can be respectively expressed as follows:

∂ūh

∂s
+

∂

∂n
[(1 + nC)v̄h] = 0, (2.17)

1

1 + nC
ū
∂ū

∂s
+ v̄

∂ū

∂n
+

Cūv̄

1 + nC

= − Rgc

1 + nC

∂ξ

∂s
− Cf (ū2 + v̄2)1/2

h
ū− 1

h

∂

∂n
(ūhT v̄s) + fv̄, (2.18)

and

1

1 + nC
ū
∂v̄

∂s
+ v̄

∂v̄

∂n
− Cū2

1 + nC
= −Rgc∂ξ

∂n
− Cf (ū2 + v̄2)1/2

h
v̄ − fu. (2.19)

In relations (2.17) to (2.19), all the variables are essentially the same as those defined
for rivers except for two new ones. These are the submerged specific gravity R =
ρs/ρ− 1 where ρs denotes the material density of sediment and ρ denotes the density
of sediment-free water, and c, the layer-averaged volume concentration of sediment
in the turbidity current column. For natural quartz sediment R has an approximate
value of 1.65. Here the turbidity current is assumed to be dilute so that c � 1.
In addition ū and v̄ denote layer-averaged velocities taken over the upward normal
direction and h denotes an effective layer thickness of the turbidity current.

In the above equations the concentration c is taken to be constant. Strictly speaking,
this assumption applies only to conservative density underflows; here it is assumed
that the turbidity current varies sufficiently slowly in the streamwise direction to allow
the assumption of constant c over several bends. The default form of the equation of
streamwise balance (2.18) for a reference equilibrium flow in a straight channel with
slope I now becomes

RgcI =
CfU

2

H
. (2.20)

Equations (2.17), (2.18) and (2.19) can be reduced precisely to the forms of (2.11),
(2.12) and (2.13) as well as the integral form of (2.14) using the scalings of (2.7) with
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the one exception that the Froude number F must be generalized to the densimetric
form

F = U/(RgcH)1/2 (2.21)

where Rc = 1 for subaerial flow and c� 1 for a submarine turbidity current.
A little is known about the convective transport of primary momentum by sec-

ondary flow in subaqueous environment, the redistribution term is dropped for
simplicity in treating the submarine case. It can be added at a later time. When
comparison between rivers and submarine channels is made, this term is set equal to
zero in both environments. An additional constraint given by (2.6) applies here as
well.

The above analysis allows the treatment of the subaerial and subaqueous cases
using a common set of equations. In the next section a procedure is outlined to solve
(2.11) to (2.14).

3. Solution procedure
The solution technique outlined here is based on a similar one from Smith &

McLean (1984). The form presented here facilitates easy comparison between the
linear and nonlinear contributions to the solution. The governing partial differential
equations are cast in a way that allows iteration on direct integral forms rather than
discretized. The normalized dependent variables in (2.11) to (2.14) can be expressed
in the following deviatoric form:

u = 1 + ud, v = 0 + εvd, (3.1a, b)

where ud and vd are deviations about the base state that would prevail in a straight
channel with a slope equal to the average centreline slope of the meandering channel.
In addition, ξd and ud represent deviations generated by curvature that are further
decomposed to the sum of a form that is a function of φ only and a form that is a
function of both φ and n but integrates to zero in the transverse direction; that is

ξd = ξdc + ξdd,

∫ 1

−1

ξdd dn = 0, (3.2a)

ud = udc + udd,

∫ 1

−1

udd dn = 0. (3.2b)

In (3.1b) the previously defined parameter ε appears as a result of the scaling
requirement discussed in Johannesson & Parker (1989) that allows the neglect of
most terms in the equation of transverse momentum balance.

It is demonstrated in Johannesson & Parker (1989) that for typical meandering
streams both the dimensionless wavenumber k and ε are of order 0.1, so that the
renormalization of k given by

r = k/ε (3.3)

renders the O(1) parameter r. In addition, deviatoric bed elevation ηd can always be
decomposed into the sum of a term ηdc varying only with φ and a term ηdd satisfying∫ 1

−1

ηdd dn = 0. (3.4)

In the present analysis flow over a bed of known topograpy is considered. Although
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the analysis generalizes for arbitrary forms of ηdc and ηdd as long as they are not
larger than O(1), here ηdc is set equal to zero for simplicity.

The expressions (3.1) to (3.3) are substituted into (2.12), (2.11), (2.13), and (2.14);
(2.11) is integrated in n subject to the boundary condition of vanishing lateral velocity
at the banks and the terms are rearraged to yield the following forms:

r
∂

∂φ
(udc + udd) + (2udc + 2udd + ηd − ξdc − ξdd + nC − AsnC)

+rF−2 ∂(ξdc + ξdd)

∂φ
− f∗vd

= 1− (1 + nC)(1 + udd + udc)[(1 + udd + udc)
2 + ε2v2

d]
1/2

1 + ξdc + ξdd − ηd
+(2udd + 2udc + ηd − ξdc − ξdd + nC)− Cvd(1 + udc + udd)

−(udd + udc)
∂

∂φ
(udc + udd)− (1 + nC)vd

∂udd

∂n
+ f∗nCvd, (3.5)

vd + r
∂

∂φ

∫ n

−1

(udc + udd + ξdc + ξdd − ηd) dn′

= −vd[ξdc + ξdd − ηd + nC(1 + ξdc + ξdd − ηd)]

−r ∂
∂φ

∫ n

−1

(udc + udd)(ξdc + ξdd − ηd) dn′, (3.6)

F−2 ∂ξdd

∂n
− C + f∗(1 + udd + udc) = C

[
(1 + udc + udd)

2

1 + nC
− 1

]
, (3.7)

ξdc + udc = −udcξdc − 1

2

∫ 1

−1

udd(ξdd − ηd) dn. (3.8)

Note that in every case above the fundamentally linear terms have been placed on
the left-hand side of the equation and the nonlinear residuals have been placed on
the right-hand side. That is, although the equations retain all essential nonlinearities
of the flow, the linear formulation is recovered by setting the right-hand side equal to
zero.

In order to simplify the notation, the nonlinear residuals on the right-hand side of
equations (3.5) to (3.8) are abbreviated to R1, R2, R3 and R4 respectively. Integration
of (3.5) from bank to bank yields

r
∂udc

∂φ
+ 2udc − ξdc + rF−2 ∂ξdc

∂φ
= R̄1 (3.9)

where

R̄1 =
1

2

∫ 1

−1

R1 dn. (3.10)

Subtraction of (3.9) from (3.5) gives

r
∂udd

∂φ
+ 2udd + ηd − AsnC − ξdd + nC + rF−2 ∂ξdd

∂φ
− f∗vd = R1 − R̄1. (3.11)
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Simplification of (3.6) gives

vd + (n+ 1)r
∂

∂φ
(udc + ξdc) + r

∂

∂φ

∫ n

−1

(udd + ξdd − ηd) dn′ = R2. (3.12)

Equations (3.7) and (3.8) can be expressed respectively as

∂ξdd

∂n
− F2C + F2f∗(1 + udd + udc) = F2R3 (3.13)

and

ξdc + udc = R4. (3.14)

Elimination of udc from (3.9) using (3.14) yields the following form:

∂ξdc

∂φ
− 3F2

r(1− F2)
ξdc = R5 (3.15)

where

R5 =
F2

r(1− F2)

(
R̄1 − 2R4 − r ∂R4

∂φ

)
. (3.16)

The analysis up to this point is completely general and can be applied with
appropriate boundary conditions. In solving the above, first all the nonlinear residuals
are set to zero and a linear solution is obtained. The linear solution is then used to
estimate the nonlinear residuals, after which the equations are solved again for an
improved solution. The process is repeated until convergence.

Here periodic boundary conditions are assumed for simplicity. That is, any param-
eter at φ + 2π is set equal to its value at φ. If the normalized length of a channel
reach is multiple of 2π, then for any variable Γ

Γ |u/s = Γ |d/s (3.17)

where u/s and d/s denote upstream and downstream respectively.

3.1. Analytical solution

Of all the possible shapes for a sinuous channel, perhaps the simplest one is the sine-
generated curve. This periodic shape is specified in terms of the angle of inclination
of the channel centreline relative to a straight downvalley coordinate as a function of
arc distance along channel centreline, as shown in figure 3. Let θ denote this angle;
for a sine-generated curve,

θ = θ0 cosφ (3.18)

where θ0 denotes angular amplitude and φ is phase, related to arclength distance
via (2.7a). Here, let C denote channel centreline curvature made dimensionless with
half-width b; it follows from (2.1) and (3.18) that

C = C0 sinφ (3.19)

where C0 denotes the curvature amplitude and is given by

C0 = kθ0. (3.20)

Rivers with self-formed bends typically form a transverse bed slope such that the
bed is lower on the outside and higher on the inside of the bend. This morphology
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is commonly known as bar-pool topography. A number of researchers have demon-
strated that this transverse bed slope is an increasing function of centreline curvature
as long as curvature is not too high (Engelund 1974; Zimmerman & Kennedy 1978;
Odgaard 1981; Johannesson 1988). Johannesson & Parker (1989) have developed a
theoretical justification for the following very simple but reasonable assumption for
channel bed structure:

ηdc = 0, (3.21a)

ηd = ηdd = −AnC = −C0An sinφ. (3.21b)

In the above relation A is a positive O(1) parameter; a predictive relation for A is
given in Johannesson (1988). Where assumptions need to be made here about channel
planform and bed topography, the relations (3.19) and (3.21) are utilized. The theory
itself, however, is capable of handling much more general planforms and bedforms.
Note that (3.21b) identically satisfies (3.4).

The specified forms (3.19) and (3.21b) for channel curvature and bed profile,
respectively, are linear in curvatue amplitude C0. They serve to introduce forcing
terms of order C0 into governing relations (3.11) to (3.13). The effect of this forcing
can be analysed by performing an expansion in C0, as illustrated in Johannesson
& Parker (1989). The linear response can be obtained by dropping the nonlinear
residuals, i.e. terms ∼ C2

0 and higher in (3.11) to (3.13), and solving the equations
subject to cyclic boundary conditions. The nonlinear residuals are strictly negligible
in the limit of small curvature, i.e. C0 � 1. While it is possible to obtain a solution in
closed form with the inclusion of the Coriolis terms, the form is quite cumbersome.
With this in mind the analytical solution of the linear problem associated with the
neglect of the Coriolis terms is given in the Appendix. The solution is essentially that
given in Johannesson & Parker (1989).

Also given in the Appendix are the results of a nonlinear expansion in curvature C0

of the same problem, carried out to second order, again upon dropping the Coriolis
terms. These analytical results are compared with the results of the full numerical
scheme given below.

3.2. Numerical solution at the linear level

As noted above, it is possible to obtain the linear solution explicitly including the
Coriolis terms. The result is so cumbersome that it is easier to bring them into the
solution iteratively. To do this all the residual terms R are set equal to zero. It is
quickly seen from (3.9) and (3.14) that the only linear solution for ξdc and udc is such
that both vanish; i.e.

ξdc = 0 (3.22)

and

udc = 0. (3.23)

Integration of (3.13) in n yields the following:

ξdd = F2(C − f∗)n− F2f∗
∫ n

−1

udd dn′ + Fξ(φ) (3.24)

where Fξ(φ) denotes a free function of integration in φ. Integration of (3.24) between
two banks and use of the fact that ξdd is defined to integrate to zero between two
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banks according to (3.2) gives the following evaluation of Fξ(φ):

Fξ(φ) = 1
2
F2f∗

∫ 1

−1

∫ n

−1

udd dn′ dn′′. (3.25)

Integration of (3.11) from an upstream point where φ = 0 yields

udd = e−2φ/r

[
udd|u/s − 1

r

∫ φ

0

(
−ξdd + ηd + rF−2 ∂ξdd

∂φ
+ nC − AsnC − f∗vd

)
e2φ/r dφ′

]
.

(3.26)

Applying a periodic boundary condition in udd to the above equation, it is found that

udd|u/s = − 1

r(e2φL/r − 1)

∫ φL

0

(
− ξdd + ηd − AsnC + rF−2 ∂ξdd

∂φ
+ nC − f∗vd

)
e2φ/r dφ

(3.27)

where φL denotes the value of φ at the downstream end. Equation (3.12) simplifies to

vd = −r ∂
∂φ

∫ n

−1

(udd + ξdd − ηd) dn′. (3.28)

To start the solution, udd and vd are first set equal to zero. This yields a solution
for ξdd from (3.24), then an evaluation of udd from (3.26). Once these parameters
are known, vd can be determined from (3.28). The known values of the variables
are used to solve (3.24) to (3.28) again until the solution converges. This is typically
realized within 2–3 iterations. Here, the numerical integrations are performed using
the trapezoidal rule. For a typical river or a relatively small submarine channel where
the effect of Coriolis force can be neglected, no iteration would be required.

3.3. Complete nonlinear solution

The complete nonlinear solution is realized as follows. The linear solution is used to
estimate the nonlinear residuals and Coriolis terms in the governing equations. These
terms act as forcing functions on the linear operators of the remaining terms. The
equations can be solved according to appropriate boundary conditions, here taken to
be cyclic. The procedure is repeated until convergence is obtained.

The solution at the (ν + 1)th iteration can be obtained from the values of the
variables at the νth iteration as follows. Integration of (3.13) in n gives

ξν+1
dd = F2

[
C − f∗(1 + udc)

ν
]
n+ F2

∫ n

1

(−f∗udd + R3

)ν
dn′ + Fξdd(φ). (3.29)

The free function of integration can be evaluated following the same approach
used at the linear level, i.e.

Fξdd(φ) = 1
2
F2

∫ 1

−1

∫ n

−1

(f∗udd + R3)
ν dn′ dn′′. (3.30)

Integration of (3.11) gives

uν+1
dd = e−2φ/r

{
udd|u/s +

1

r

∫ φ

0

[
Rν1 − R̄ν1 −

(
ηd − AsnC + nC

+rF−2 ∂ξdd

∂φ

ν+1

− ξν+1
dd − f∗vνd

)]
e2φ/r dφ′

}
. (3.31)
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Using the periodic boundary condition, udd|u/s can be evaluated as

udd|u/s =
1

r(e2φL/r − 1)

∫ φL

0

[
Rν1 − R̄ν1

−
(
ηd − AsnC + nC + rF−2 ∂ξdd

∂φ

ν+1

− ξν+1
dd − f∗vνd

)
e2φ/r dφ

]
. (3.32)

Integration of (3.15) in φ gives an expression for ξdc. Depending on whether the
flow is supercritical or subcritical, in the Froude sense, i.e. whether F > 1 or F < 1,
the calculation must proceed from upstream or downstream, respectively. If F > 1
then

ξν+1
dc = e3F1φ

{∫ φ

0

R5e
−3F1φ dφ′ + ξdc|u/s

}ν
. (3.33)

If F < 1 then

ξν+1
dc = e3F1φ

{
ξdc|d/se−3F1φL −

∫ φL

φ

R5 e−3F1φ dφ′
}ν

(3.34)

where

F1 =
F2

r(1− F2)
. (3.35)

The boundary values are determined using periodic conditions and take the following
forms for supercritical and subcritical flow, respectively:

ξdc|u/s =
1

e3F1φL − 1

∫ φL

0

Rν5e−3F1φ dφ (3.36)

and

ξdc|d/s =
1

e−3F1φL − 1

∫ φL

0

Rν5e−3F1φ dφ. (3.37)

From (3.14)

uν+1
dc = − (Rν4 + ξν+1

dc

)
(3.38)

and (3.12) can be expressed as

vν+1
d = Rν2 − (n+ 1)r

∂

∂φ
(udc + ξdc)

ν+1 − r ∂
∂φ

∫ n

−1

(udd + ξdd − ηd)ν+1 dn′. (3.39)

The calculation starts at ν = 1 with the evaluation of the nonlinear residuals using
the known values of the variables from the linear solution. The solution procedure is
repeated using the known values on the right-hand sides of (3.29) to (3.39) from the
previous or current step until the solution converges to the desired level of accuracy.

In both the linear and nonlinear solutions the gradients of some variables in both
the n- and φ-directions must be evaluated. In the n-direction a central differencing is
used for interior points and a forward and backward differencing is used at n = −1
and n = +1 respectively. The use of periodic boundary conditions allows central
differencing in the φ-direction for both interior and end points. If the last node in
the calculation domain in streamwise, i.e. φ-direction is Imax, then according to the
periodic boundary condition,

Γnode Imax+1 = Γnode 2 (3.40)

where Γ denotes any variable.
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4. Interpretation
4.1. Interpretation for rivers

The interpretation of Ikeda, Hino & Kikkawa (1976) of how meanders evolve in
subaerial channels is based on the analysis of Engelund (1974). Their treatment
focused on the near-bank value of deviatoric streamwise flow velocity ud. A positive
near-bank value of ud was associated with bank erosion and a negative value with
near-bank deposition, so allowing an interpretation of the tendencies for channel
shift.

Ikeda et al. (1981), Parker et al. (1982) and Parker (1983) formalized this inter-
pretation into a quantitative method for predicting channel shift. In particular, the
tendency for the streamwise flow velocity to be biased towards one bank or another
can be quantified in terms of the locus of high streamwise velocity, as shown in figure
3. The bank toward which the locus is biased is assumed to erode, with the opposite
bank depositing so as to maintain constant width as the channel shifts. The locus of
high velocity can be quantified in terms of a transverse distance of deviation nu given
by the moment

nu =

∫ 1

−1

n(1 + udd + udc) dn∫ 1

−1

(1 + udd + udc) dn

. (4.1)

The normal rate of migration of a bank is assumed to depend linearly upon nu,
allowing the channel to shift as shown in figure 3. From (3.23), udc = 0 at the linear
level. Combining (3.19) with (A 1), (A 5), and (A 6) it can be readily seen that in
the limiting case of very large and small values of r the solution for udd becomes
respectively

udd = −nC (4.2)

and

udd = 1
2

(
A+ As + F2 − 1

)
nC. (4.3)

It is clear from (4.1), (4.2), and (4.3) that for large and small values of r the thread
of high velocity is aligned toward the inner and outer side of the bend respectively.
In the first case the meander will die out as the inside of bend is eroded and in the
second case the meander will continue to grow as the outside of bend is eroded. In
nature most meanders grow in amplitude and they also migrate downstream. The
channel selects a value of r (dimensionless wavelength) which pushes the thread of
high velocity to the outside of the bend slightly downstream of the apex. Consequently
the channel centreline shifts both outward and downstream (Parker 1983). From (A 5)
and (A 6), udd > 0 at the outside of a bend apex only if Bu > 0. The critical value rc
such that meander amplitude increases for r < rc is seen from (A 5) to be given as

rc =
√

2[F2 + A+ As − 1]. (4.4)

The condition at the linear level for the growth of meander is, therefore, rc > r > 0.

4.2. Interpretation for subaqueous meandering channels

Empirical documentation of the mechanism by which meandering develops in chan-
nels on subaqueous fans remains sparse and incomplete. It is necessary to understand
the nature of their documentation in order to discuss the applicability of the flow
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Figure 4. Diagram showing the cross-section of an aggrading submarine channel at various times.
The diagram illustrates how the channel can shift sideways even though there is net deposition
everywhere.

model presented here. Subaqueous fans are essentially depositional environments.
The main sources of their documentation are seismic surveys of the seafloor such
as those given in Pirmez & Flood (1995). These surveys provide cross-sectional, or
in some cases three-dimensional views of the structure of the sedimentary deposits
below the seafloor. In such images the channel can often be identified by the ‘gull
wing’ shape denoted in figure 4. A successive stacking of such channels documents
channel aggradation as a result of sediment deposition. It is observed in some cases
(e.g. Kenyon, Amir & Cramp 1995) that as the channel migrates upward due to
sediment deposition, it also migrates laterally. As shown in figure 4, bank erosion
is not required in order for lateral migration to occur in this case. The channel can
migrate laterally while maintaining constant width if the following two conditions are
fulfilled: (a) there is less deposition on one bank of a cross-section than the opposite
bank and (b) the rate of vertical channel aggradation is sufficiently high relative to the
rate of bank deposition. Thus channel migration can occur in a purely depositional
setting. That the migration of subaqueous meandering channels does occur in purely
or predominantly depositional settings is documented by the presence of bend cutoffs
on e.g. the channels of the Amazon submarine fan (Damuth et al. 1988; Pirmez
1994). Such cutoffs are, however, noticeably less frequent in meandering channels on
submarine fans than they are in the case of alluvial rivers. The implication is that
lateral shift of aggrading channels on submarine fans may be less dynamic than it is
in the case of rivers.

The analysis presented in the previous section can nevertheless be used to obtain at
least a qualitative picture of the tendency for meander development in such channels.
For example, even in a purely depositional setting, the near-bank value of deviatoric
velocity ud may positive against one bank, so suppressing deposition there, and
negative against the opposite bank, so enhancing it. This can lead to channel shift
and the increase of channel sinuosity without channel narrowing as long as the bank
deposition rate is sufficiently low compared to the vertical aggradation rate. If in
turn the vertical aggradation rate is sufficiently small compared to a characteristic
response time of the flow, the quasi-steady analysis of flow in meandering channels
presented in the previous section allows an interpretation of the tendency for meander
amplitude to grow. This interpretation follows that presented for rivers in terms of
the locus of high streamwise velocity.

Recently, however, three-dimensional seismic images of buried aggradational sub-
marine channels have suggested that in some cases the channels appear spontaneously
with high-amplitude meanders. The channel then aggrades upward without showing
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Figure 5. Planform of a submarine meandering channel from the subsurface tertiary of West Africa.
The three-dimensional seismic image of the channel reach revealed vertical aggradation without
much evidence of lateral migration. Courtesy: V. Kolla.

sufficient evidence of bend migration (Kolla et al. 1998). An example of the planform
of such a channel is shown in figure 5. The shape of the bends in that figure (which
apparently includes an incipient cutoff) is highly reminiscent of alluvial bends in
rivers, so suggesting an evolutionary process.

It is suggested here that the process in question may be channel narrowing. Pirmez
(1994) and Pirmez & Flood (1995) have documented that when channel avulsion
occurs on the Amazon submarine fan, the resulting flow out of the breach remains
unchannelized for a time. Subsequently levees build so as to gradually confine the
main thread of flow, and the construction of an aggradational channel commences. A
process by which high-amplitude meanders can be formed by differential narrowing
of the levees in the absence of substantial channel aggradation is outlined in figure 6.
The present model can be applied at least qualitatively to this case as well. That is,
the bank/levee near which the deviatoric velocity ud is positive narrows less rapidly
than the opposite bank, near which ud is negative, resulting in an amplification in
sinuosity over time.

Highly sinuous meanders resulting from this narrowing process have been observed
in the subaerial environment. The channels of the Okavango River in the Okavango
Delta, Africa provide an example. In this case the agent of channel narrowing is the
encroachment of papyrus reeds (Smith et al. 1997).

5. Results
5.1. Linear versus nonlinear solution

The research on river bend evolution due to Ikeda et al. (1981), Parker et al. (1982),
Parker (1983) and Parker & Andrews (1986) employs the present solution for flow
in bends only to the linear level. Indeed, at small curvature a linear solution may be
sufficient to understand the physics of flow and meander evolution. As meander bends
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A B C C B A

Figure 6. Diagram showing channel narrowing process by which a sinuous channel can evolve
from an initially wide channel.

continue to grow, however, they evolve into complex shapes with increasingly high
curvature, as well as point bars with high amplitude. As curvature and bar amplitude
increase nonlinearity in the flow solution can be expected to play an increasing role in
the flow dynamics, and thus influence the shape and evolution of meandering. Here
the linear, second-order nonlinear and fully nonlinear flow solutions are compared to
identify the effects of nonlinearity on the flow field.

5.1.1. Focus on geometric parameters

The following base case is used to perform some numerical experiments. The
Pembina river in Alberta, Canada represents a fairly typical sand bed stream. A reach
of this channel has a width of 80 m, mean bankful depth of 2.5 m, mean velocity of
1.0 m s−1, a typical wavelength of 2 km along channel centreline, and a water surface
slope of 2.6 × 10−4 (see Johannesson 1988). The above field data give F = 0.20,
Cf = 6.4 × 10−3, and r = 1.23. The sinuosity of the river is around 1.5. An assumed
angular amplitude of 72◦ gives a sinuosity of 1.56. With the above geometric and
flow conditions (4.4) indicates that the scour factor A needed for the bend to grow
and migrate must be at least 1.72 (neglecting As). The typical value of A, however, is
around 5 (Johannesson 1988). Figure 7 shows the velocity vectors over one wavelength
simulated for the above data with A = 5.0. The difference between the linear and fully
nonlinear solutions is apparent. Figure 8 shows the linear, second-order nonlinear
and fully nonlinear solutions for the variables udd, vd, and ξdd at different sections
parallel to the channel centreline (run B of table 1).

Because of its important role in channel shift, the focus of the comparison presented
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Run B/H F I Cf r A θ0(deg.) C0 As

B 16.0 0.2 2.6× 10−4 6.4× 10−3 1.23 5.0 72 0.158 0
A1 16.0 0.2 2.6× 10−4 6.4× 10−3 1.23 3.0 72 0.158 0
A2 16.0 0.2 2.6× 10−4 6.4× 10−3 1.23 1.0 72 0.158 0
θ1 16.0 0.2 2.6× 10−4 6.4× 10−3 1.43 5.0 60 0.152 0
θ2 16.0 0.2 2.6× 10−4 6.4× 10−3 0.91 5.0 90 0.145 0
As1 16.0 0.2 2.6× 10−4 6.4× 10−3 1.23 1.72 72 0.158 0
As2 16.0 0.2 2.6× 10−4 6.4× 10−3 1.23 1.72 72 0.158 1.0

Table 1. Input conditions for different numerical runs to find the effect of non-dimensional
parameters on the nonlinearity.
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Figure 7. Velocity vector at a 72◦ bend. (a) Linear solution; (b) nonlinear solution.

below centres on the thread of high velocity. Figure 9 shows the effect of scour factor
A on the locus of high velocity. It can be clearly seen that as A increases, the nonlinear
solution deviates more from the linear solution. Inputs for figures 9(a), 9(b), and 9(c)
are given in rows B, A1, and A2 of table 1 respectively. As expected, it was found
that there is no difference between the analytical and numerical solution at the linear
level with f set equal to zero.

If r is increased from its base value of 1.23 associated with the example of
the Pembina River, θ0 must be proportionately decreased to maintain the same
curvature and, therefore, bed profile. However, changing θ0 to maintain the same
curvature causes the downvalley wavelength to also change in accordance with (3.20).
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Figure 8. Different non-dimensinal flow parameters computed from linear, second-order nonlinear
and fully nonlinear solutions for a 72◦ bend. (a) udd at n = ±1; (b) vd at n = ± 0.25; (c) ξdd at
n = ±1.

A reasonable compromise would be to study the effect of θ0 and r together by
maintaining a constant downvalley wavelength. In this case, the curvature C0 would
vary only modestly for values of θ0 ranging between 45◦ and 90◦ (figure 10). The
combined effect of r and θ0 for a constant downvalley wavelength is shown in figure
11. For inputs see runs θ1, B, and θ2 of table 1. Over this range, changing of θ0 and
r alters the flow only modestly. This is expected because of the constraint according
to which r is appropriately changed with θ0 to maintain a constant downvalley
wavelength. In all three cases, however, the differences between the linear, second-
order nonlinear and the fully nonlinear solutions are clear. It can be clearly seen
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Figure 9. Effect of scour factor on the nonlinearity of the flow field.
(a) A = 5; (b) A = 3; (c) A = 1.

that nu obtained from the fully nonlinear solution has a larger maximum value than
the linear solution. The differences in magnitude between the linear and second-
order nonlinear solutions are relatively small. Even though the normalized curvature
is relatively small (around 0.15), the substantial difference between the linear and
nonlinear solution is driven by the high lateral bed slope associated with a scour
factor of 5.

5.2. Redistribution of primary flow by the secondary current

The secondary current redistributes the primary flow momentum and pushes the
thread of high velocity towards the outer bank, thus further encouraging the growth
of meandering. The importance of this redistribution was described in detail by
Johannesson (1988). The role of this redistribution term, which is described by As
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Figure 10. Maximum channel centreline curvature C0 and ratio of linear to arc wavelength (λL/λ)
for different values of θ0 but constant λL.

in (2.12), is perhaps most evident under conditions that are nearly the critical one
for bend growth described by (4.4). The case for the Pembina River described above
can be used to clarify this. From the linear theory, the meander bend is at neutral
stability when the scour factor has a value of 1.72 and the redistribution term As is
neglected (run As1 of table 1). The value of As for this case can be computed to be
1.0 from (2.15). The inclusion of As sways the flow toward a condition under which
the meander amplitude grows (run As2 of table 1). The locus of velocity excess nu at
the nonlinear level for both runs are plotted in figure 12. The difference is clear: in
the case As = 0 it is seen that nu = 0 at the bend apex (maximum C), whereas nu > 0
at the same place if As is included.

5.3. Flow in a meandering submarine channel

The Amazon Channel, on the submarine fan of the same name, provides a classic
example of a strongly meandering submarine channel. Detailed bathymetric data
and analysis of the meandering characteristics of the Amazon Fan Channel are
available in the literature (Pirmez 1994; Pirmez & Flood 1995). The channel has
relatively uniform geometric characteristics (e.g. channel width, depth, wavelength,
slope, etc.) in the middle fan region between latitudes of 5◦ to 7◦. Flow is simulated
here in a sine-generated curve that approximately represents the characteristics of
the Amazon channel in the mid-fan region. The following average values have
been estimated from the work of Pirmez (1994): half-width b = 0.5 km, bankful
depth H = 50 m, linear or downvalley wave length λL = 4.5 km, sinuosity (arc
wavelength/downvalley wavelength) = 2.0, and a channel slope I = 2.0 m km−1. Since
the channel is dormant during the present high stand of sea, there is no information
available on the flow velocity and the concentration of the suspended sediment. Here,
a mean reach-averaged velocity of U = 5.0 m s−1 and a sediment concentration of 2%
by volume are arbitrarily assumed, giving a densimetric Froude number of 1.24. These
assumed values are reasonable for a submarine turbidity current (Parker et al. 1986).
Information is not available on lateral bed slope and, therefore, the scour factor A
is arbitrarily set equal to zero. A sine-generated curve with an angular amplitude of
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Figure 11. Effect of the angular amplitude θ0 and the normalized wavenumber r on the locus of
high velocity. (a) θ0 = 60◦, r = 1.43; (b) θ0 = 72◦, r = 1.23; (c) θ0 = 90◦, r = 0.91.

50◦ and the above geometric data gives a cross-valley amplitude (distance between
two consecutive apexes) of 3.17 km, which is somewhat high but fairly typical of the
field data. At a latitude of 6◦, the Coriolis force is very small (f = 1.5 × 10−5) and
is not expected to play any significant role. The friction factor Cf is estimated from
(2.8) under the assumption of base flow condition neglecting the Coriolis force. With
the above information, the non-dimensional parameters r and F can be estimated
as 26.96 and 1.24, respectively. Applying the same geometric and flow conditions
to a river gives F = 0.226, and I = 6.6 × 10−5. Even with the same geometry and
flow velocity, the Froude number in the subaerial case is approximately 20% of the
subaqueous case. At the linear level, it can be easily shown that a submarine channel
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Figure 12. The role of redistribution of primary flow momentum by the secondary current in the
growth of meander bends. The change in the locus of high velocity can be clearly seen as As is
considered.

is dynamically equivalent to a river if the following condition is fulfilled:

[F2 + A]submarine = [F2 + A]subaerial. (5.1)

Recalling that Asubmarine has been set equal to zero, (5.1) yields a scour factor A of
1.49 for the equivalent river. Numerical simulations are performed with the above
data (summarized as run SUB1 and RIV1 in table 2) for a submarine and subaerial
channel.

Linear and fully nonlinear solutions across two apexes and the crossing (defined in
figure 3a) are compared in figures 13 and 14. At the linear level (figure 13) udd and vd
match each other in the two environments due to the imposition of (5.1). However,
there is a dramatic difference in the case of ξdd. The superelevation in the river is
more than one order of magnitude smaller than that in the submarine channel. In the
case of the fully nonlinear solution (figure 14), the difference between the submarine
and subaerial environment in udd is modest; in vd it is noticeable and in ξdd it is
again dramatic. In particular, the predicted difference between the height of the flow
interface (water surface elevation) at the outside of a bend apex and the inside of the
same apex is seen to be over 80% of the mean flow thickness (depth) in the submarine
case, but less than 4% in the subaerial case. The extremely large superelevation in the
submarine environment can be seen in figure 2 where the surface between a turbidity
current and the clear water above shows a dramatic asymmetry associated with a
bend.

5.4. The role of Coriolis force on superelevation of flow thickness

It is seen from figures 13(c) and 14(c) that the Coriolis force has almost no effect on
the flow at the low latitude of the Amazon Fan. For a larger Coriolis force at a higher
latitude, the superelevation would show some asymmetry at the crossing. Since the
Coriolis force has been considered by many researchers to be a leading cause of levee
asymmetry (Chough & Hesse 1980), its role is studied here by considering the same
submarine channel as above but at a higher latitude of 45◦, where f is 1.0×10−4. The
calculated superelevation of the flow thickness at the crossing (free from the effect of
curvature) is shown in figure 15 (run SUB2 of table 2). The effect of the Coriolis force
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Figure 13. Comparison of velocity and superelevation between a submarine channel and equivalent
river at the linear level. (a) Streamwise velocity excess udd; (b) lateral velocity excess vd; and (c)
superelevation ξdd for submarine channel; (d) superelevation ξdd for river: – – –, submarine; ——,
subaerial.
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Run B/H F I Cf r A θ0(deg.) C0 f

SUB1 10.0 1.240 2.0× 10−2 12.95× 10−4 26.96 0.0 50 0.305 1.5× 10−5

RIV1 10.0 0.226 6.6× 10−5 12.95× 10−4 26.96 1.49 50 0.305 1.5× 10−5

SUB2 10.0 1.240 2.0× 10−2 12.95× 10−4 26.96 0.00 50 0.305 1.0× 10−4

RIV2 10.0 0.226 6.6× 10−5 12.95× 10−4 26.96 1.49 50 0.305 1.0× 10−4

SUB3 38.23 1.987 5.0× 10−4 25.16× 10−5 26.53 0.00 30 0.13 1.0× 10−4

SUB4 38.23 1.987 5.0× 10−4 25.16× 10−5 26.53 0.00 30 0.13 1.5× 10−5

Table 2. Input conditions for different numerical runs for submarine channels and their subaerial
equivalents.
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Figure 15. Plot of superelevation at the crossing shows the effect of Coriolis force at
a higher latitude (45◦).

is modest but clearly visible. The elevation difference of the water surface between two
banks caused by the Coriolis force at a crossing between bends is about 3% of the
flow thickness. For the equivalent river the elevation difference caused by the Coriolis
force is well under 0.1% (run RIV2 of table 2). However, comparison of figure 14(c)
with figure 15 clearly shows that for the length scale (width) of the Amazon Channel
even at a higher latitude the effect of channel curvature completely dominates that of
the Coriolis force.

This might seem to contradict the observation of strong curvature-independent levee
asymmetry observed for the North-West Atlantic Mid-Ocean Channel (NAMOC). In
NAMOC, which is only mildly sinuous, the right levee looking downchannel is
consistently and substantially higher than the left one (figure 16), a phenomenon
which has been attributed to a Coriolis effect so strong that it swamps the effect of
curvature (Klaucke, Hesse & Ryan 1998). A consideration of (2.13) in conjunction
with the non-dimensionalization of (2.7d) allows, however, the inference that the
relative effect of the Coriolis force depends on flow scale, and in particular channel
width, as well as latitude. In the case of NAMOC, the relative effect of the Coriolis
force is amplified compared to the Amazon channel previously considered not only by
the high latitude (above 45◦) but also a channel width that is an order of magnitude
larger.

The present numerical model can be applied to a sine-generated curve that is
representative of NAMOC. The following estimates for NAMOC between the lat-
itudes of 44◦ N and 48◦ N were extracted from Klaucke et al. (1998); half-width
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Figure 16. Plot of water depth of the NAMOC levees and channel floor showing the consistent
asymmetry of levee height (from Klaucke et al. 1998).
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Figure 17. Non-dimensional superelevation of flow thickness at two bend apexes and a crossing
simulated for the geometry of NAMOC shows that the Coriolis effect is dominant over the
centrifugal force.

b = 6.5 km, bankful depth, H = 170 m, arc wavelength λ = 160 km, and centreline
radius of curvature, Rc = 50 km. In addition, Klaucke et al. (1998) estimated a ve-
locity of 2.93 m s−1 for an excess density of 10 kg m−3 which is equivalent to 0.62%
by volume. From the above information the input data required to run the model
has been determined and listed in table 2 as run SUB3. The simulated superelevation
of flow thickness ξdd at two bend apexes and the crossing are plotted in figure 17.
This figure clearly demonstrates that for the geometry, latitude and assumed flow
conditons of NAMOC, the Coriolis effect not only dominates mean curvature, but
drives a consistent asymmetry in the elevation of the flow interface between the left
and right banks that averages to about 22% of mean channel depth. It is of interest
to see if the Coriolis force still dominates over the centrifugal force for the geometry
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Figure 18. Non-dimensional superelevation of flow thickness at two bend apexes and a crossing
simulated for the geometry of NAMOC but at a lower latitude of 6◦ shows a substantially diminished
Coriolis effect.

and flow conditions of the NAMOC at a lower latitude of 6◦ (typical of the Amazon
Fan). Figure 18 shows the result of such a calculation with input data listed as SUB4
in table 2. It is found that despite the large scale of the channel the Coriolis effect
has diminished at the lower latitude.

5.5. Search for an appropriate velocity and concentration

In the analysis of flow in the Amazon Channel, a flow velocity and sediment con-
centration were assumed such that the flow was mildly supercritical, as is typically
assumed in many theoretical and numerical treatments (Parker et al. 1986; Imran
et al. 1998). However, there is no reason to presume that the flow must remain
supercritical as it develops far downstream. The flow that has been considered above
for the Amazon channel is associated with a normalized wavenumber r that is so
high that the meander bends would certainly die in time. That is, r = 26.96 for the
submarine channel, a value far in excess of the critical value rc = 1.04 calculated
from (4.4), below which meander bends increase in amplitude according to the linear
theory. The mere existence of a strongly sinuous channel planform indicates that
conditions must have existed to encourage the growth of channel meandering. Given
the channel geometry it is possible to search for acceptable ranges of flow velocity
and sediment concentration that would have allowed the meander bends to grow.
From (4.4) the condition at which meander bends are neutrally stable is

r2 = 2(F2 + A− 1). (5.2)

From (5.2) and the definition of F for subaqueous channels given by (2.21), the
following expression for concentration cc at neutral stability can be obtained:

cc =
−2F2

2 +
√

4F4
2 + 8J2F4

2 (A− 1)

4(A− 1)
(5.3)

where J = 2πH/λI and F2 = U(RgH)−1/2. A necessary condition for meander growth
at the linear level is c < cc. For a real solution of (5.3), A must be larger than 1, i.e. the
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Figure 19. Relation between concentration and reach-averaged velocity which is favourable for
the growth of submarine meanders.

channel bed must have a finite amount of transverse slope at the bends. This places
a lower bound on A in the application of the linear theory to the determination of
conditions necessary for the growth of a submarine meandering channel. The linear
theory places no intrinsic upper bound on A. That such a bound exists, however, can
be seen from (3.21). Let |ηd|m denote the magnitude of the maximum value of |ηd| at
the banks, i.e. n = ±1. According to (3.21),

|ηd|m = C0A. (5.4)

If C0 is infinitesimally small A can be arbitrarily large without making |ηd|m > 1, i.e.
protruding the bed perturbation above the channel bank. However, for a value of C0

of 0.305 for the Amazon Channel given in table 2, |ηd| exceeds unity for A > 3.3. The
relationship between c and U is plotted in figure 19 for different values of the scour
factor A. In solving (5.3), the following data on the mid-fan region of the Amazon
Channel were extracted from Pirmez (1994): λ = 9.0 km, H = 50 m, and I = 0.002.
In a turbidity current that can sustain itself over a reasonably long distance, the
sediment concentration is likely to be dilute. An upper limit of 5% concentration
by volume might be a reasonable approximation. That yields the window for the
required velocity range for U and c for subaqueous meander formation for a specific
channel as shown in figure 19.

Prediction of the flow field of a turbidity current based on channel geometry is not
new. Komar (1969) first used a simple balance between the pressure force, centrifugal
force, and the Coriolis force to derive a relationship between flow velocity and
sediment concentration. The method was later used by Pirmez (1994) and Klaucke
et al. (1998) to find flow conditions in the Amazon Channel and the NAMOC
respectively. The above mentioned force balance can be expressed as

u2

Rc
+ fu = Rgc

∆ξ

2b
(5.5)

where u is the mean streamwise velocity, Rc is the centreline radius of curvature, ∆ξ
is the elevation difference between two banks, b is the half-width, R is the reduced
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Figure 20. Comparison of concentration and reach-averaged velocity calculated from the present
linear theory and the force balance relation of Komar (1969).

specific gravity of the suspended sediment, c is the volume concentration of sediment,
and f is the Coriolis parameter defined earlier. Note that in (5.5), Rc must be
considered to be a parameter that changes sign with changing bend sense in order
for the equation to be interpreted correctly. Equation (2.13) of the present analysis
can be considered to be a more general form that supersedes (5.5). Although not
employed here, another commonly used approach for estimating the flow velocity of
a turbidity current is the autosuspension model of Bagnold (1962). Komar (1969)
compared concentration and velocity calculated using his force balance equation, i.e.
(5.5), and Bagnold’s model. Concentration and velocity calculated from the present
theory (5.3) and the force balance equation (5.5) of Komar for the above mentioned
Amazon Channel are plotted in figure 20. Solution of (5.5) requires some additional
information such as asymmetry of levee height and radius of curvature. In the mid-
fan region of the Amazon Channel the asymmetry in levee height ∆H is 5 m and
the minimum centreline radius of curvature Rc is 1.64 km for the assumed maximum
curvature of 0.305. It is found here that the present theory with realistic values of
A predicts higher sediment concentration compared to the force balance relation of
Komar. If A is increased arbitrarily to a value of 6, the calculations from the two
methods show good agreement.

6. Conclusions
A generalized model of flow in meandering submarine and subaerial channels has

been presented. The governing equations have been cast in a way which enables their
integration without dropping the higher-order nonlinear terms. Solutions obtained at
linear and nonlinear levels allow direct comparison between the two. The solution
procedure is straightforward and not computationally intensive. Use of the present
solution procedure overcomes the limitations associated with a linear model without
requiring a significant increase in computational resource or time. The model solves
the flow field for depth or current thickness, as well as streamwise and lateral velocity.
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Here, the analysis has been focused on the thread of the streamwise velocity excess
because it relates the flow field to the channel migration tendencies.

The assumptions made to bring the conservation equations of turbidity currents
into the same form as those for open channel flow places some limitations on the
application of the model to the submarine environment. In particular, the analysis is
not applicable under conditions where the balance between deposition and erosion is
far from equilibrium, i.e. the current is either highly depositional or erosional. Such
conditions, however, are not conducive to the formation of well-defined meandering
channels hundreds of kilometres long such as the Amazon Channel. The analysis
provides some insight into the relation between flow in bends and the inception and
growth of channel meanders in the submarine environment. The difference in flow
thickness between the inner and outer banks has been found to be extremely large
in the subaqueous environment. This exaggerated superelevation is supported by an
acoustic image of a flow event that took place in a submarine channel in Prince Rupert
Inlet, Canada (Hay 1987b). The comparison between a submarine and a subaerial
channel illustrates both differences and similarities between the two environments. A
simple linear analysis yields a range of mean velocities and sediment concentrations
that permit the growth of meander bends. The analysis, though, is helpful in con-
straining the range of flow conditions of turbidity currents which would have formed
meandering submarine channels that are dormant in the present geological time.

The present study should be considered a simplified attempt to understand the flow
in meandering submarine channels. The limitations placed by considering a conserva-
tive developed turbidity current allow comparison between subaerial and submarine
environments. In future studies the assumption of a mildly non-conservative turbidity
current can overcome this limitation.

We would like to thank Professor Chiang C. Mei and three anonymous reviewers
for their valuable suggestions and comments. Funding from the National Science
Foundation (Grant No. NSF OCE-9711431 and NSF CTS-9424507) is gratefully
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Appendix. First- and second-order analytical solutions for flow in a
channel with a sine-generated planform

It is assumed here that the channel planform is given according to the sine-generated
curve of equation (3.18), so that the dimensionless channel curvature obeys equation
(3.19). In addition, the bed topography is assumed to be given by the simple form of
(3.21).

The variables can be expanded in curvature amplitude C0 (e.g. Johannesson &
Parker 1989) as follows:

udd = C0udd1 + C2
0udd2 + . . . , ξdd = C0ξdd1 + C2

0ξdd2 + . . . ,

vd = C0vd1 + C2
0vd2 + . . . ,

ξdc = C2
0ξdc2 + . . . , udc = C2

0udc2 + . . . .

 (A 1)

Using the above expansion in (3.11) to (3.13) the following results are obtained at
O(C0):

ξdd1 = F2n sinφ, (A 2)

r
∂udd1

∂φ
+ 2udd1 = n

[
(A+ As + F2) sinφ− r cosφ

]
(A 3)
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and

vd1 + r
∂

∂φ

∫ n

−1

[
udd1 + (F2 + A) sinφ

]
n dn = 0. (A 4)

The solution of (A 3) is

udd1 = n(Au cosφ+ Bu sinφ) (A 5)

where

Au = −rA+ As + F2 + 1

4 + r2
, Bu =

2(A+ As + F2 − 1)− r2

4 + r2
. (A 6)

Substitution of (A 5) into (A 4) gives

vd1 + r
∂

∂φ

∫ n

−1

[
Au cosφ+ Bu sinφ+ (F2 + A) sinφ

]
n dn = 0 (A 7)

which simplifies to

vd1 = 1
2
r(1− n2) (Av cosφ− Au sinφ) (A 8)

where

Av = (F2 + A+ Bu). (A 9)

The following is obtained from (3.13) at O(C2
0 ):

C2
0

∂ξdd2

∂φ
= R3 (A 10)

where

R3 = C2
0F

2n[2Au sinφ cosφ+ (2Bu − 1) sin2 φ]. (A 11)

The solution of (A 10) is

ξdd2 = F2
(
Aξ2 − Aξ2 cos 2φ+ Au sin 2φ

) (
1
2
n2 − 1

6

)
(A 12)

where

Aξ2 = Bu − 1
2
. (A 13)

Equation (3.11) gives the following at O(C2
0 ):

C2
0

[
r
∂udd2

∂φ
+ 2udd2 − ξdd2 +

r

F2

∂ξdd2

∂φ

]
= R1 − R̄1 (A 14)

where

R1 = −C2
0

1
2
{n2[(γ1 + γ2) + (γ1 − γ2) cos 2φ+ γ3 sin 2φ]

+ 1
2
r[(γ4 + γ5) + (γ4 − γ5) cos 2φ+ γ6 sin 2φ]} (A 15)

and

γ1 = A2
u + rAuBu − 1

2
rAuAv, (A 16a)

γ2 = B2
u + A2 + F4 − 2ABu + 2Bu + 2AF2 − F2 − A
−2BuF

2 + 1
2
rAu − rAuBu + 1

2
rAuBu, (A 16b)
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γ3 = 2AuBu − 2AAu + 2Au − 2AuF
2 − 1

2
rAv − rA2

u + rB2
u − 1

2
rAvBu + 1

2
rA2

u, (A 16c)

γ4 = AuAv, γ5 = −Au(1 + Bu), γ6 = Av + AvBu − A2
u, (A 16d–f )

and

R̄1 = −C2
0

1
2

[
( 1

3
α1 + α4) + ( 1

3
α2 + α5) cos 2φ+ ( 1

3
α3 + α6) sin 2φ

]
(A 17)

where

α1 = γ1 + γ2, α2 = γ1 − γ2, α3 = γ3, (A 18a–c)

α4 = 1
2
r(γ4 + γ5), α5 = 1

2
r(γ4 − γ5), α6 = 1

2
rγ6 (A 18d–f )

leading to

R1 − R̄1 = C2
0

(
1
6
− 1

2
n2
)

(α1 + α2 cos 2φ+ α3 sin 2φ) . (A 19)

Finally (A 14) becomes

r
∂udd2

∂φ
+ 2udd2 =

(
1
2
n2 − 1

6

)
(χu2 + χa cos 2φ+ χb sin 2φ) (A 20)

where

χu2 = F2Aξ2 − α1, χa = − (F2Aξ2 + α2 + 2rAu
)
, χb =

(
F2Au − α3 − 2rAξ2

)
.

(A 21a–c)

The solution of (A 20) is

udd2 =
[

1
2
χu2 + Au2 cos 2φ+ Bu2 sin 2φ

] (
1
2
n2 − 1

6

)
(A 22)

where

Au2 =
χa − rχb
2(1 + r2)

, Bu2 =
χb + rχa

2(1 + r2)
. (A 23a,b)

At second order R4 from (3.8) and (3.14) has the following expression:

R4 = −C2
0

1

2

∫ 1

−1

udd1(F
2 + A) sinφn dn (A 24)

which simplifies to

R4 = −C2
0 (β1 − β1 cos 2φ+ β2 sin 2φ), (A 25)

β1 = 1
6
(A+ F2)Bu, β2 = 1

6
(A+ F2)Au. (A 26a,b)

From (3.16) at O(C2
0 )

R5 = F2

(
R̄1 − 2R4 − r ∂R4

∂φ

)
. (A 27)

Using (A 17) and (A 25), (A 27) becomes

R5 = C2
0 [χc + χd cos 2φ+ χe sin 2φ] (A 28)

where

χc = F2
(− 1

6
α1 − 1

2
α4 + 2β1

)
, χd = F2

(− 1
6
α2 − 1

2
α5,−2β1 + 2rβ2

)
, (A 29a,b)

χe = F2
(− 1

6
α3 − 1

2
α6 + 2rβ1 + 2β2

)
. (A 29c)
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The following is obtained from (3.15):

r(1− F2)
∂ξdc2

∂φ
− 3F2ξdc2 =

R5

C2
0

(A 30)

which integrates to

ξdc2 = − χc

3F2
+ Dξ1 cos 2φ+ Dξ2 sin 2φ (A 31)

where

Dξ1 = −3F2χd + 2r(1− F2)χe
9F4 + 4r2(1− F2)2

, Dξ2 =
χd + 3F2Dξ1

2r(1− F2)
. (A 32a,b)

The parameter udc2 can be found from the expansion of (3.8) as

udc2 =
R4

C2
0

− ξdc2 (A 33)

which can be also expressed as

udc2 =
(
−β1 +

χc

3F2

)
+
(
β1 − Dξ1

)
cos 2φ− (β2 + Dξ2

)
sin 2φ. (A 34)

The last unknown vd2 can be determined from the expansion of (3.12) at O(C2
0 ) leading

to

vd2 + r
∂

∂φ

∫ n

−1

(udd2 + ξdd2) dn = −r(n+ 1)

C2
0

∂R4

∂φ
− r(A+ F2)

× ∂

∂φ

∫ n

−1

udd1 sinφn dn− (1 + A)vd1n sinφ (A 35)

which upon substitution and integration becomes

vd2 =
(
χf + Av2 cos 2φ+ Bv2 sin 2φ

)
(n− n3) (A 36)

where

χf = 1
4
r(1 + A+ F2)Au, (A 37a)

Av2 = 1
3
r(F2Au + Bu2) + 1

3
r(A+ F2)Au − 1

4
r(1 + A+ F2)Au, (A 37b)

Bv2 = 1
3
r(F2Aξ2 − Au2) + 1

3
r(A+ F2)Bu − 1

4
r(1 + A+ F2)Av. (A 37c)
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